SOME RESULT OF NON-COPRIME GRAPH OF INTEGERS MODULO n GROUP FOR n A PRIME POWER

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizations of the simple group $D_{n}(3)$ by prime graph and spectrum

We prove that $D_n(3)$, where $ngeq6$ is even, is uniquely determined by its prime graph. Also, if $G$ is a finite group with the same prime graph as $D_4(3)$, then $Gcong D_4(3), B_3(3), C_3(3)$ or $G/O_2(G)cong {rm Aut}({}^2B_2(8))$.

متن کامل

the coprime graph of a group

the coprime graph $gg$ with a finite group $g$‎ ‎as follows‎: ‎take $g$ as the vertex set of $gg$ and join two distinct‎ ‎vertices $u$ and $v$ if $(|u|,|v|)=1$‎. ‎in the paper‎, ‎we explore how the graph‎ ‎theoretical properties of $gg$ can effect on the group theoretical‎ ‎properties of $g$‎.

متن کامل

Directed prime graph of non-commutative ring

Prime graph of a ring R is a graph whose vertex set is the whole set R any any two elements $x$ and $y$ of $R$ are adjacent in the graph if and only if $xRy = 0$ or $yRx = 0$.  Prime graph of a ring is denoted by $PG(R)$. Directed prime graphs for non-commutative rings and connectivity in the graph are studied in the present paper. The diameter and girth of this graph are also studied in the pa...

متن کامل

On the Value Set of n! Modulo a Prime

We show that for infinitely many prime numbers p there are at least log log p/ log log log p distinct residue classes modulo p that are not congruent to n! for any integer n.

متن کامل

A Gcd-Sum Function Over Regular Integers Modulo n

We introduce a gcd-sum function involving regular integers (mod n) and prove results giving its minimal order, maximal order and average order.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fundamental Mathematics and Applications (JFMA)

سال: 2020

ISSN: 2621-6035,2621-6019

DOI: 10.14710/jfma.v3i2.8713